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I. INTRODUCTION

Due to the presence of thermally excited capillary waves,
the free surfaces of fluids �1�, complex fluids, and other ge-
nerically soft materials are fluctuating structures. Examining
the surface dynamics of such soft materials provides a win-
dow into their rheology. Consequently, capillary waves and
interfacial dynamics have been probed by light scattering
techniques �2,3� in a variety of systems, including mem-
branes and monolayers �4�, liquid metals �5�, polymer solu-
tions �6,7�, brushes �8�, and gels �9�. These light scattering
techniques probe surface dynamics at length scales in the
micron range; however, newer experiments using x-ray pho-
ton correlation spectroscopy �XPCS� �10,11� extend these
measurements into the submicron range, allowing investiga-
tors to probe even smaller-scale surface height fluctuations.

Previous theoretical work has used a variety of different
continuum models to study the dynamics of capillary waves
on polymer films. Harden et al. �12� studied the dynamics of
capillary waves on thick films—where the wavelength of the
capillary waves is much smaller than the depth of the film—
using a two-fluid model of a semi-infinite polymer solution.
For the opposite limit, a large wavelength expansion has
been used to study single polymer layers �in both the absence
�13� and presence �14� of interfacial slip� and double layers
�15�. Finally, both single �16,17� and double �18� layers of
arbitrary depth have been studied. These continuum ap-
proaches have been remarkably successful in accounting for
the surface dynamics observed experimentally in many sys-
tems. In polymeric systems such continuum-based methods
must begin to fail in the limit of increasing molecular weight
and decreasing film thickness, where the short dimension of
the liquid becomes comparable to the size of the constituent
molecules. Indeed, there is experimental evidence �19� for
and subsequent theoretical conjecture �20,21� about the shift
�relative to its bulk value� in the glass transition temperature
of high-molecular-weight polymer thin films.

In recent experiments, Kim et al. �22� and Hu et al. �23�
used XPCS to study capillary waves on layers of polymeric
films. They examined both single layers of polystyrene �PS�
supported on a silicon substrate �22� and double layers of a
PS layer overlying a brominated polystyrene �PBrS� layer on
a silicon substrate �23�. In the double-layer experiments, the

XPCS technique allowed for the independent measurement
of the dynamics of both the upper surface of the PS, which
we refer to as the free surface, and the PS/PBrS interface,
which we refer to as the buried interface.

The most striking result of the double-layer experiments
of Hu et al. is the appearance of a slow
��100 s� decay rate in the height-height correlations of both
the upper and buried interfaces that is approximately inde-
pendent of the in-plane wave number q. This phenomenon
occurs at wavelengths that are on the order of the film thick-
ness, a regime in which many of the existing theories
�12–15� are not valid. In this article we extend the previous
theoretical work to two-layer viscoelastic systems and
explore—via continuum viscohydrodynamic calculations
and scaling arguments—the possible origins of the
q-independent decay rate reported by Hu et al.

Acknowledging that the thickness of the fluid layers is on
the order of a few radii of gyration of the constituent mol-
ecules, one may question whether these discrepancies point
towards the failure of a continuum-based analysis. Despite
this concern, we show that a viscoelastic continuum model
can give rise to the observed q-independent decay rate. In
order to quantitatively account for the experimental data,
however, we must use surprisingly long stress relaxation
times in these continuum models, which in turn leads us to
postulate that the polymer dynamics in the thin films is hin-
dered by confinement effects. Based on these attempts to fit
the scattering data using our model, we suggest that the ex-
periments mentioned above provide an interesting measure
of confinement effects on the molecular dynamics in the
melt.

The remainder of the paper is organized as follows: in
Sec. II we examine simple scaling arguments that suggest
that viscoelastic supported films can exhibit the phenomena
reported in �23�. In Sec. III we calculate the dynamics of the
single supported fluid layer system using a continuum hydro-
dynamic description of the fluid. We consider both a purely
viscous Newtonian fluid and the simplest model for a vis-
coelastic fluid, the Maxwell fluid, which is characterized by a
single relaxation time. We also examine the effects of slip at
the fluid/substrate interface on these dynamics; in particular,
we show that slip alone cannot account for the q-independent
decay rate. We then turn to the study of the two-layer system

PHYSICAL REVIEW E 75, 021604 �2007�

1539-3755/2007/75�2�/021604�14� ©2007 The American Physical Society021604-1

http://dx.doi.org/10.1103/PhysRevE.75.021604


in Sec. IV. Here, we consider both the system of two New-
tonian fluids and the case of one Newtonian fluid and one
Maxwell fluid. We show that our model of a Maxwell fluid
buried beneath a Newtonian fluid can account for a number
of the experimental features observed in the double-layer
systems studied �23�. We again explore the effects of slip on
the dynamics of the system, in this case at the liquid/liquid
interface. Finally, in Sec. V, we discuss our results more
broadly in the context of the dynamics of multilayered sys-
tems, focusing on the long stress relaxation times necessary
to account for the results of �23�, as well as the implications
such times have for the dynamics of polymers near an inter-
face. We conclude with suggestions for future experiments to
further test our analysis.

II. SCALING ANALYSIS

The experiments of Kim et al. �22� and Hu et al. �23�
present an interesting theoretical challenge for which at least
a few suggestions have been offered �16,18�. We first use a
few numerical estimates to narrow the focus of our problem.
Consider a supported fluid film of thickness d on a solid
substrate, as shown in Fig. 1. The fluid has mass density �
and a surface tension � at the free surface. The deformation
of the free surface in capillary waves is subject to restoring
forces due to gravity, surface tension, and van der Waals
interactions. We assume that the bending energies of the in-
terface are negligible �we will return briefly to this point in
Sec. V�. The relative importance of each of these three forces
depends strongly on the wavelength of the disturbance. Let
us first consider the effect of gravity on the surface. For
wavelengths less than the capillary length �� /�g, surface-
tension-induced forces dominate over gravitational forces.
The XPCS experiments can detect capillary waves of wave-
lengths less than the typical transverse coherence length of
the beam, which is �10 �m �11,22,23�. The capillary wave-
length, however, is on the order of 1 cm; therefore, we may
neglect the effect of gravity. We can also estimate the impor-
tance of van der Waals forces for this system. The van der
Waals disjoining pressure on the surface is given by PvdW
=A /6�d3, where the Hamaker constant A�10−20 J �24�. For
the films under consideration, d�100 nm, so that PvdW
�0.5 N/m2. The pressure on the interface due to the surface
tension is given by Pst��q2h. We consider only wave-
lengths q�10−2d, so that Pst�10 N/m2. Thus, we may also
ignore the effects of van der Waals forces.

The importance of inertial effects in the fluid dynamics
may be estimated by considering the Reynolds number �26�

of the flows associated with the capillary waves. The Rey-
nolds number for such flows is given by Re�D1h� /	,
where D1 is the length scale over which the fluid velocity
vanishes �we expect it to be the lesser of the inverse wave
number 1/q and the film thickness d�, 	=
 /� is the kine-
matic viscosity, and h and � are the typical height and decay
rate of the surface disturbance, respectively. Using the equi-
partition theorem to determine the average magnitude of
thermally generated capillary waves, ��hq�2	�kBT /�q2, we
find that Re�O�10−7�. This estimate demonstrates that iner-
tial stresses are greatly dominated by viscous ones in the
material. Thus, we ignore inertial stresses in the remainder of
this article; that is, we assume that all of the fluids are com-
pletely overdamped.

Given that we are considering low-Reynolds-number dy-
namics at scales well below the capillary length, we now turn
to simple scaling arguments to determine the possible wave
number dependence of the relaxation rates of overdamped
capillary waves. In particular, we ask, what properties of the
fluid lead to a q-independent dispersion relation—i.e., ��q�
�q0? The fluid deformations generated by capillary waves
store energy in the fluid interface and, for viscoelastic fluids,
in the bulk as well. When these deformations relax, this en-
ergy is dissipated through viscous stresses in the fluid. The
scaling behavior of the dispersion relation can then be found
by equating the power generated by relaxing the elastic de-
formations in the fluid with the power dissipated viscously
by the fluid.

For a Newtonian fluid, energy can be stored only in the
interface at the free surface. Consider the lightly shaded por-
tion of the fluid in Fig. 1, whose cross-sectional area in the
x-y plane is A� l /q, l being a unit length in the ŷ direction.
The total power transferred to this volume of fluid from the
interface is the product of the normal stress generated by the
surface tension, �q2h, the surface area A, and speed of the
surface as the deformation relaxes, �h:

Psurf � ��q2h�A�h . �1�

The viscous force density for the incompressible fluid is

�2v, where v is the fluid velocity. Then the power dissi-
pated in the bulk of the fluid is given by

Pdiss =
 d3xv
�2v � A


0

d

dzv̄�z��2v̄�z� , �2�

where v̄�z� is velocity averaged over one wavelength in the
horizontal �x̂� direction; since the velocity is periodic in x, its
variation in x does not affect the scaling behavior of the
dispersion relation.

We can relate the fluid velocity v̄ to the interfacial height
via volume conservation. During the relaxation of a surface
undulation, fluid volume is transferred from elevated regions
to the depressed ones, so A�th��dydzv̄�z�, where the inte-
gral is over a unit of area whose normal is parallel to x̂.
Using this relation and equating the power input to the power
dissipated, we find that the wave number dependence of the
decay rate � can be determined from

FIG. 1. Schematic illustration of a single supported fluid layer of
thickness d.
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� �

�q4

0

d

dzv̄�z��2




0

d

dzv̄�z��2v̄�z�
. �3�

We now distinguish two different scaling regimes. In the
thin-layer limit �qd�1� the velocity decay into the fluid is
set by the thickness of the layer, so �0

ddz�d and �2�1/d2.
For thick layers �qd�1�, however, the velocity decays ex-
ponentially into the fluid, so �0

ddz�1/q and �2�q2. Thus,
we find two possible dispersion relations depending on the
value of qd,

� ��
�q4d3



, qd � 1,

�q



, qd � 1.

�4�

This argument suggests that a Newtonian fluid will not ex-
hibit the desired q-independent dispersion relation.

If we consider instead a viscoelastic fluid, we note that
elastic energy is also stored in the bulk due to the state of
deformation in the material, as long as the decay rate of the
capillary wave is fast compared to the stress relaxation time
in the viscoelastic material. This storage of elastic energy in
the bulk changes our previous scaling arguments. For ex-
ample, in an elastic solid characterized by a bulk modulus �,
the power released in the bulk during the relaxation of the
deformation takes the form

Pbulk � A�

0

d

v̄�z��2ū�z� , �5�

where ū�z� is the average displacement field in the medium:
ū�z�� v̄�z� /�. This expression is similar in form to the vis-
cous power dissipation in Eq. �2�. Indeed, if we equate the
power dissipated with the power input from the bulk, we find
��� /
 for all values of q. Thus, this simple scaling argu-
ment suggests that the desired q-independent behavior is a
manifestation of the viscoelastic response of the fluid. In
order to verify the results of these heuristic arguments and to
determine over which range of wave numbers one might ob-
serve a q-independent dispersion relation, we now turn to the
complete solutions of the Stokes equation for supported,
overdamped Newtonian and viscoelastic fluid layers.

III. SINGLE LAYER

In the experiments of Kim et al. �22� and Hu et al. �23�
the dynamics of thermally driven capillary waves on a poly-
mer interface are measured via the intensity-intensity auto-
correlation function g2�q , t���I�q , t��I�q , t+ t��	 of x rays
scattered off of that interface. Here, the brackets �¯	 indi-
cate an average over an equilibrium ensemble; experimen-
tally, this average is computed by averaging over the start
time t�. The autocorrelation function is proportional to the
height-height correlation function S�q , t�� �h�q , t��h*�q , t
+ t��	 �25�. As shown in Appendix B, we can use the

fluctuation-dissipation theorem to calculate this thermal
quantity by considering the separate problem of the response
of the fluid to an external force acting on its surface.

Consider, then, the response of the single, supported, in-
compressible fluid layer shown in Fig. 1 to an external stress
field �ext, which is normal to the free surface and character-
ized by frequency � and wave vector q�qx̂,

�ext = �0ei�qx−�t�. �6�

The response of the fluid to the applied stress is described by
the vertical deviation or height function of the free surface
h�x , t�, the velocity v�x ,z , t�, and the pressure P�x ,z , t�.
Given the form of �ext in Eq. �6�, all of these dynamical
quantities can be written in the form

g�x,z,t� = g�q,z,��ei�qx−�t�. �7�

The general solution to the Stokes equation in the case that
the dynamical quantities take the form of Eq. �7� is deter-
mined in Appendix A. In particular, all of the dynamical
quantities listed above can be related to the normal compo-
nent of the fluid velocity, which is given by Eq. �A9�. In
order to determine the four integration constants in Eq. �A9�,
we need to specify the boundary conditions at the top and
bottom boundaries of the fluid. At the fluid/substrate inter-
face, the normal component of the fluid velocity must vanish,

vz�z=d = 0. �8�

We may account for both slip and stick boundary conditions
on the tangential velocity component by introducing a slip
length , so that at the fluid/substrate interface,

vx�z=d = − �zvx�z=d. �9�

Taking =0 reduces the above boundary condition to the
usual no-slip condition.

At the free surface, the rate of change of the height of the
interface must equal the fluid velocity at that point,

vz�z=0 = − i�h�q,�� . �10�

Furthermore, this interface cannot support shear stresses,

�xz
f �z=0 = 0, �11�

where the fluid stress tensor � f takes the usual form

�ij
f = 
�����iv j + � jvi� − �ijP , �12�


��� being the frequency-dependent viscosity characterizing
the viscoelastic response of the material. Finally, the free
surface can support a stress discontinuity between the exter-
nally applied stress and the hydrodynamic stresses in the
bulk material, due to the presence of a finite surface tension:

�ext = �q2h�q,�� − �zz
f �z=0. �13�

Using the boundary conditions, Eqs. �8�–�11�, to solve for
the fluid velocity and pressure fields, we obtain the normal
fluid stress at the free surface from Eq. �12�,

�zz
f �z=0 = i�
���B�q�h�q,�� , �14�

where
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B�q� = 4q
cosh2�qd� + q2d2 + q�2qd + sinh�2qd��

sinh�2qd� − 2qd + 4q sinh2�qd�
.

�15�

Then Eq. �13� becomes

�0 = h�q,����q2 − i�
���B�q�� . �16�

The normal-mode frequencies are those which satisfy Eq.
�16� in the absence of an external stress and with a nonzero
fluid height:

�q2 − i�n
��n�B�q� = 0. �17�

For this overdamped system the frequencies �n, given by the
solutions to Eq. �17�, all lie on the negative imaginary axis.
We refer to the norm of these complex numbers as the decay
rates of the system, �̃n= i�n.

As stated above, the experimentally measurable quantity
for this system is the intensity autocorrelation function,
which is directly proportional to the height-height correlation
function. Using Eq. �B3�, we find

S�q,t� = − �
�n

lim
�→�n

�� − �n�e−i�t

���q2 − i�
���B�q��
. �18�

Thus, the surface height dynamics—as parametrized by the
decay rates �̃n—can be extracted from the experimental
measurement of S�q , t�. We now turn to the calculation of
these decay rates for single supported Newtonian and Max-
well fluids. In light of the data of �22,23� we pay particular
attention to the dependence of these decay rates on wave
number q.

A. Newtonian fluid

For Newtonian fluid the viscosity is real, positive, and
independent of frequency, 
���=
�0. This is generally a
good approximation for small molecule liquids and for vis-
coelastic materials on time scales much longer than their
typical stress relaxation times. As shown in Appendix C, we
expect only one decay rate, and indeed there is only one root
of Eq. �17� in this case,

�̃�q� =
�q2


B�q�
. �19�

We note that, for the case where there is no slip between the
fluid and substrate, the same result can be obtained from the
previous theoretical work of Jäckle �16,22�.

The decay rates in the presence of both small and large
slip lengths are shown in Fig. 2. When the slip length is
small, �d, the decay rate is independent of it to leading
order in q,

�̃�q� = �
�q4d3

3

, qd � 1,

��q�
2


, qd � 1.

�20�

Other than numerical prefactors, this result is identical to the
one obtained using the simple scaling arguments given

above—see Eq. �4�. It is also consistent with the experimen-
tal results obtained by Kim et al. for a single PS layer, for
which a q4 scaling behavior was observed over wave num-
bers qd�1 �22�.

When a significant amount of slip occurs between the
fluid and solid interfaces �i.e., �d�, an intermediate-
scaling regime in the decay rate appears,

�̃�q� =�
�q4d2



, qd � 1, q2d � 1,

�q2d

4

, qd � 1, q2d � 1,

��q�
2


, qd � 1.

�21�

Thus, we can see that a Newtonian fluid does not exhibit a
q-independent decay rate, even if there is a significant
amount of slip between the fluid and substrate.

Because there is only one decay rate, the height-height
correlation function, Eq. �18�, exhibits a simple exponential
decay,

S�q,t� =
1

�q2e−�̃t. �22�

B. Maxwell fluid

A Maxwell fluid, which is the simplest model for a vis-
coelastic material, has a complex, frequency-dependent vis-
cosity of the form


��� = 
 +
E�

1 − i��
, �23�

where E is the transient modulus of the polymer network, �
is the stress relaxation time of the medium, and 
 accounts
for the high-frequency viscous response �27�. In this case Eq.
�17� can be written as a quadratic equation in �; that is, we
obtain two decay rates, in agreement with the arguments
given in Appendix C. These rates are given by

FIG. 2. Dimensionless decay rate 
d�̃ /� for a Newtonian fluid
as a function of qd. The dotted �solid� lines are for a system with a
small �large� liquid/substrate slip length, =0.01d �=10d�.
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�̃±�q� =
N ± �N2 − 4�
�

2
�
, �24�

where N�
+E�+�� and ��q�=�q2 /B�q�. Since N2

−4�
�= �
+E�−���2+4�E�2�0, both the fast decay rate
�̃+ and slow decay rate �̃− are positive real numbers.

In Fig. 3 we plot the fast and slow decay rates for both
small and large amounts of slip at the substrate, using param-
eter values characteristic of a layer of PBrS, as listed in Table
I. When the slip length is small compared to the film thick-
ness, �d, we find

�̃+�q� = �

 + E�


�
, qd � 1,

��q�
2


, qd � 1,

�25�

�̃−�q� = �
�q4d3

3�
 + E��
, qd � 1,

1

�
, qd � 1.

�26�

When the slip length is large compared to film thickness,
�d, we find

�̃+�q� = �

 + E�


�
, qd � 1,

��q�
2


, qd � 1,

�27�

�̃−�q� =�
�q4d2


 + E�
, qd � 1, q2d � 1,

�q2d

4�
 + E��
, qd � 1, q2d � 1,

1

�
, qd � 1.

�28�

As we can see from both the analytic expressions and the
numerical results shown in Fig. 3, the fast �slow� decay rate
is independent of q at low �high� wave numbers. Such be-
havior is in agreement with the experimental results of �23�,
and it is also consistent with the scaling arguments given in
Sec. II for the elastic response of a viscoelastic fluid. On the
other hand, the scaling of the fast and slow decay rates in
their respective q-dependent regimes—at high qd in the
former case and at low qd in the latter—is identical to that of
a Newtonian fluid in these regimes. Thus, the viscous re-
sponse of the fluid determines the scaling of �̃± where each
decay rate exhibits a strong dependence on the wavelength,
whereas the elastic response of the fluid gives rise to the
q-independent behavior of �̃±.

From this analysis we predict that the height-height cor-
relation function S�q , t� will exhibit a double-exponential de-
cay for a Maxwell fluid. In particular, Eq. �B3� becomes

S�q,t� = �
±
 ��̃±� − 1�


�B�q��̃±��̃± − �̃��
�e−�̃±t � �

±
A±e−�̃±t.

�29�

These amplitudes are plotted in the inset of Fig. 3.
In order to predict the form of experimental measure-

ments of S�q , t�, one must consider the values of both the
decay rates and the q-dependent amplitudes appearing in Eq.
�29�. In principle, the decay of the height-height correlation
function S�q , t� should always have the double-exponential
form given in Eq. �29�. It is clear from the inset of Fig. 3,
however, that the amplitude of one of these terms can domi-
nate the other at certain wave numbers. In particular, the
amplitude of the slow mode dominates for qd�1, whereas

TABLE I. Geometric and rheological parameters corresponding
of the single-layer �SL� and double-layer �DL� systems. The param-
eter values are chosen to correspond and reproduce the major fea-
tures of the double-layer experiments in �23�.

Parameter Symbol Value

PS layer thickness d2 100 nm

PBrS layer thickness d �SL�, d1 �DL� 200 nm

PS viscosity 
2 104 kg/ �m s�
PBrS viscosity 
 �SL�, 
1 �DL� 106 kg/ �m s�
PBrS surface tension �SL� � 10−2 N/m

PS/PBrS interface tension �1 10−3 N/m

PS surface tension �2 10−2 N/m

PBrS plateau modulus E 103 Pa

PBrS stress relaxation time � 100 s

FIG. 3. Dimensionless decay rates 
d�̃± /� for a Maxwell fluid
as a function of qd, using the parameter values listed in Table I for
PBrS. The dotted �solid� lines are for a system with a small �large�
liquid/substrate slip length, =0.01d �=10d�. The dashed lines
indicate the approximate window of decay rates that can be mea-
sured in the experiments, 10−3 s−1��̃�10 s−1. Inset: ratio of the
amplitude of the term in S�q , t� that decays with rate �̃+ to that of
the term that decays with rate �̃−.
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the amplitude of the fast mode dominates for qd�1. In
these regimes, it will be hard to measure both decay rates.
The full double-exponential decay should be observable only
in the crossover region between these two regimes, which
occurs at qd�1 for parameter values consistent with current
experiments.

We can see from the inset of Fig. 3 that for both qd�1
and qd�1, the amplitude of the q-dependent rate is much
larger than that of the q-independent rate. Taken in isolation,
this fact suggests that it would be difficult to observe the
q-independent rate in these regions. In predicting the experi-
mentally observed behavior of S�q , t�, however, it is impor-
tant to take the value of the decay rates themselves into ac-
count. In particular, there is a finite range of decay rates that
can be measured: the decay times can be too fast or too slow
to be observed within the time scales of the experiment. We
have indicated a reasonable experimental window—from
1/10 s to 1000 s for the decay times—by the dashed lines in
Fig. 3. Then we see, for example, that the slow decay rate
becomes too slow to be measured experimentally at long
wavelengths. As a result, the faster q-independent decay rate
could be observed in this regime, despite the fact that its
amplitude is much smaller than the slow decay rate. We do
not comment on the sensitivity of the experiments to small-
amplitude capillary dynamics. If the larger-amplitude mode
is too slow and the smaller-amplitude mode generates too
small a surface height undulation, no interfacial dynamics
may be detected.

This analysis suggests that for qd�1 it should in prin-
ciple be possible to observe a q-independent decay of S�q , t�
over at least one decade of qd, depending on the sensitivity
of the measurement. For higher wave numbers, qd�1, how-
ever, the slower q-dependent mode will be fast enough to be
measured by the current experiments, so we expect it to
overwhelm the smaller amplitude q-independent mode.

IV. DOUBLE LAYER

We now turn to the double layer case, illustrated in Fig. 4.
The buried and upper fluids have viscosities 
1��� and 
2���
and thicknesses d1 and d2, respectively. The total thickness is
d=d1+d2. In general, we can drive this system by spatially
oscillatory normal stresses acting on both the buried fluid/
fluid interface and the free surface. As in the single-layer

case, we consider stresses of the form of Eq. �6�. Combining
the stresses on both interfaces into a single vector, we write

�ext�x,t� = �1

�2�ei�qx−�t�. �30�

For simplicity, we consider the possibility of slip at only the
fluid/fluid interface, as the effects of slip at the fluid/substrate
interface have already been explored in the single layer case.

At the fluid/substrate interface all components of the fluid
velocity must vanish:

v1,z�z=d = v1,x�z=d = 0. �31�

At the fluid/fluid interface the z components of the velocities
of the two fluids must match, but the tangential components
of the velocities do not if there is a finite slip length  at this
interface:

v1,z�z=d2
= v2,z�z=d2

, �32�

�v2,x − v1,x��z=d2
= − ��zv2,x − �zv1,x��z=d2

. �33�

Note that �0 when the buried polymer layer is more vis-
cous than the upper layer (Re�
1�����Re�
2���� for all real
�) and vice versa.

From the definition of the interface heights,

v1,z�z=d2
= − i�h1�q,�� , �34�

v2,z�z=0 = − i�h2�q,�� . �35�

In addition, the free surface cannot support shear stresses and
the shear stress must be continuous across the fluid/fluid in-
terface:

�2,xz
f �z=0 = 0, �36�

�1,xz
f �z=d2

= �2,xz
f �z=d2

. �37�

Finally, the normal stress discontinuities at both the fluid/
fluid interface and the free surface are determined by their
respective surface tensions ��1 and �2, respectively�,

�1 = �1q2h1�q,�� + ��2,zz
f − �1,zz

f �z=d2
, �38�

�2 = �2q2h2�q,�� − �2,zz
f �z=0. �39�

Using Eqs. �31�–�37� to eliminate the fluid velocities in favor
of the interfacial height functions, the normal-stress equa-
tions �38� and �39� can be written in matrix form

� = � · h , �40�

where

� � �1

�2
�, h � h1�q,��

h2�q,�� � ,

and

FIG. 4. Schematic illustration of two fluid layers, of thicknesses
d1 and d2, on a substrate. The coordinates are chosen so that the
fluid/solid interface is the plane z=d and the unperturbed free sur-
face is the plane z=0.
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� ���1q2 −
i�s11�q,��

��q,��
−

i�s12�q,��
��q,��

−
i�s12�q,��

��q,��
�2q2 −

i�s22�q,��
��q,��

� , �41�

with

s11�q,�� = 4q
1
2�1 + �1 + 2q2d1

2�sech�2qd1���tanh�2qd2� − 2qd2 sech�2qd2�� + 4q
2
2�1 − �1 + 2q2d1

2�sech�2qd1��

� �tanh�2qd2� + 2qd2 sech�2qd2�� + 8q
1
2�2qd1�2q2d1d2 − 1�sech�2qd1�sech�2qd2� + tanh�2qd1�� + 8q2�
1 − 
2�

��
1�1 + �1 + 2q2d1
2�sech�2qd1���1 − sech�2qd2�� + 
2�tanh�2qd1� − 2qd1 sech�2qd1���tanh�2qd2�

+ 2qd2 sech�2qd2��� , �42�

s12�q,�� = −
8q
2

2 cosh�qd2� − sech�qd2�
�
2�1 − �1 + 2q2d1

2�sech�2qd1���qd2 + tanh�qd2�� + 
1�2q3d1
2d2 sech�2qd1�

+ �tanh�2qd1� − 2qd1 sech�2qd1���qd2tanh�qd2� + 1�� + 2q�
1 − 
2��tanh�2qd1�

− 2qd1 sech�2qd1���tanh�qd2� + qd2�� , �43�

s22�q,�� = 4q
2
2�1 − �1 + 2q2d1

2�sech�2qd1���tanh�2qd2� + 2qd2 sech�2qd2�� + 4q
1
2�tanh�2qd1�

− 2qd1 sech�2qd1���1 + �1 + 2q2d2
2�sech�2qd2�� + 8q2
2�
1 − 
2��tanh�2qd1�

− 2qd1 sech�2qd1���tanh�2qd2� + 2qd2 sech�2qd2�� , �44�

��q,�� = 2
2�1 − �1 + 2q2d1
2�sech�2qd1���1 − sech�2qd2�� + 2
1�tanh�2qd1� − 2qd1 sech�2qd1��

� �tanh�2qd2� − 2qd2 sech�2qd2�� + 4q�
1 − 
2��tanh�2qd1� − 2qd1 sech�2qd1���1 − sech�2qd2�� , �45�

where, for clarity, we have suppressed the �possible� fre-
quency dependence of the viscosities 
1 and 
2.

The two normal modes of the double-layer system are
easily identified if we diagonalize the normal-stress matrix
equation �41�, bringing the dynamical relations into the form

�+

�−
� = + 0

0 −
�h+�q,��

h−�q,�� � , �46�

where

�± � �1
±�1 + �2

±�2, h± � �1
±h1 + �2

±h2, �47�

and ± and �± are, respectively, the eigenvalues and the
orthonormal eigenvectors of the matrix �. The eigenvalues
may be written as

± =
1

2
�Tr � ± ��Tr ��2 − 4 det �� , �48�

and the corresponding eigenvectors are

�± =
1

��12
2 + �± − �11�2�12

± − �11� . �49�

We can see from Eq. �46� that h+ and h− are the amplitudes
of the two independent normal modes of this double-layer
system. As in the single-layer case, the characteristic decay
rates of these two modes can be found by solving the system
of equations in the absence of external forces, �=0. From
Eq. �46� we note that the characteristic decay rates �̃n

± of the
h± mode are the roots of the eigenvalue ±, where n indexes
the roots.

Examining Eq. �48�, it is clear that these roots are also
roots of the determinant of �, which may be written as

det ���� =
��q,��
��q,��

�i��2 −
q2

��q,��

���1s22�q,�� + �2s11�q,���i� + �1�2q4,

�50�

where
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��q,�� = 16q2
1
2
2�4q2d1d2�1 − q2d1d2�sech�2qd1�sech�2qd2� + tanh�2qd1�tanh�2qd2��

+ 8q2
2
3�1 − �1 + 2q2d1

2�sech�2qd1���1 − �1 + 2q2d2
2�sech�2qd2��

+ 8q2
1
2
2�1 + �1 + 2q2d1

2�sech�2qd1���1 + �1 + 2q2d2
2�sech�2qd2�� + 16q3
2�
1 − 
2��
1�tanh�2qd2�

+ 2qd2 sech�2qd2���1 + �1 + 2q2d1
2�sech�2qd1�� + 
2�tanh�2qd1� − 2qd1 sech�2qd1���1 − �1 + 2q2d2

2�sech�2qd2��� .

�51�

Furthermore, we can see from Eq. �48� that the trace of � is
positive �negative� for the roots �̃− ��̃+�.

Given the normal modes of the system, we can again use
the results of Appendix B to calculate the height-height cor-
relation functions Sk�q , t�� �hk�q , t�hk

*�q ,0�	 for k=1,2,
where k=1 labels the buried interface and k=2 the free sur-
face. Equation �B3� gives the normal-mode correlation func-
tions S±�q , t�, which can then be used to compute Sk�q , t�
using Eq. �47�,

Sk�q,t� = − �
�n

�k̄ k̄��n�

i�n
 �

��i��
�det ���

�=�n

−1

e−i�nt

� �
�n

An
�k�e−�̃nt, �52�

where k̄=2,1 for k=1,2.
Clearly for the two-layer system our solutions depend on

a larger set of geometric and material parameters. We do not
show all possible parameter regimes, but consider in both the
following figures and asymptotic results a parameter regime
consistent with the experiments of Hu et al. �23�. In particu-
lar, we take the layer depths to be of the same order, d1
�d2, and the surface tension of the fluid/fluid interface to be
less than that of the free surface, �1��2. We also assume
that the buried polymer layer is much more viscous than the
upper layer, Re�
1�����Re�
2���� for all real �. However,
many of our results below �e.g., the scaling behavior of the
normal-mode decay rates� apply more generally to two-layer
viscoelastic systems.

A. Two Newtonian fluids

In the case that both layers can be described as Newtonian
fluids with viscosities 
1���=
1 and 
2���=
2, it is clear
from Eq. �50� that det � is a simple quadratic function of �.
Thus, there are two normal-mode decay rates, as expected
from the arguments given in Appendix C. Specifically, the
roots of Eq. �50� are given by

�̃±�q� =
q2

2�
��1s22 + �2s11 ± ���1s22 + �2s11�2 − 4�1�2��� ,

�53�

where �̃±� i�±. The values of the fast mode �̃+ and the slow
mode �̃− for parameters consistent with a PBrS buried fluid
and a PS upper fluid �see Table I� are plotted in Fig. 5. The
�̃+ and �̃− modes correspond to nearly in-phase and out-of-

phase undulations of the two surfaces, respectively.
Using Eqs. �42�–�45�, one can show that both normal-

mode decay rates exhibit the same asymptotic scaling behav-
ior observed for the single viscous layer discussed above.
When the slip length is small, �d,

�̃+�q� = �
�2q4d2

3

3
2
, qd � 1,

�2�q�
2
2

, qd � 1,

�54�

�̃−�q� = �
�1q4d1

3

3
1
, qd � 1,

�1�q�
2
1

, qd � 1.

�55�

A large slip length at the fluid interface �i.e., �d� produces
an intermediate scaling regime in �̃+,

�̃+�q� =�
�2q4d2

2


2
, qd � 1, q2d � 1,

�2q2d2

4
2
, qd � 1, q2d � 1,

�2�q�
2
2

, qd � 1.

�56�

However, the value of �̃− is unaffected by the presence of
a large slip length when 
1�
2. Thus, we can see that, like
the single-layer case, a double layer of Newtonian fluids

FIG. 5. Dimensionless decay rates 
1d�̃± /�1 and amplitude ra-
tios A+

�k� /A+
�k� �inset� as a function of qd for a double-layer system

with a buried Newtonian PBrS layer and an upper Newtonian PS
layer, using the parameter values given in Table I. The dotted �solid�
lines are for a system with a small �large� liquid/liquid slip length,
=0.01d �=10d�.
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does not exhibit a q-independent decay rate, even in the pres-
ence of liquid-liquid slip.

Examining the normal-mode amplitude ratio as a function
of wave number, shown in the inset of Fig. 5, we see that at
the upper surface the fast-mode amplitude always dominates,
while at the buried interface the slow mode always domi-
nates. Thus, the decay of the height-height correlation func-
tions, which are given by Eq. �52�, are essentially of the form
of a single-exponential decay, S1�q , t��e−�̃−t and S2�q , t�
�e−�̃+t. The large size of the amplitude ratios at the two
surfaces is due primarily to the large viscosity difference
between the two layers. If we were to consider a two-layer
system having similar viscosities and similar interfacial ten-
sions at the two surfaces, we would find amplitude ratios at
the two surfaces of order unity. Of course, the rates them-
selves would be approximately equal as well in this limit.

B. One Maxwell fluid, one Newtonian fluid

When one of the fluids in the double layer is viscoelastic,
we expect to find additional decay rates, as we found for the
single viscoelastic layer. Here, we focus on the case of a
buried viscoelastic fluid. It is known from the single-layer
experiments that PS fluid layers—the upper fluid in the
double-layer experiments—are well described by a purely
viscous Newtonian fluid model �22�. On the other hand, we
expect the PBrS layer to have longer stress relaxation times.
We model this viscoelastic layer using the Maxwell model,
so that 
1��� is of the form of Eq. �23�. This approach in-
troduces two unknown rheological parameters for the mate-
rial �namely, E and ��, which we discuss more fully below.

For simplicity, we analyze this system with stick boundary
conditions at all interfaces—i.e., =0.

From examining the zeros of Eq. �50� we find four sepa-
rate decay rates for this dynamical system, in agreement with
the arguments given in Appendix C. These decay rates for a
double layer system with a buried PBrS layer and an upper
PS layer are shown in Figs. 6�A� and 6�C�, using the param-
eters given in Table I �these two plots are identical, except
that the line styles in each are chosen to correspond to Figs.
6�B� and 6�D�, respectively; we explain this in more detail
below�. The behavior of the decay rates is qualitatively simi-
lar to the single-layer viscoelastic case. In particular, each
rate has two major scaling regions: a q-dependent region,
where the decay rate scales like that Newtonian fluid of a
�i.e., �q4 for small qd or �q for large qd� and a
q-independent region. In the single-layer case, however, the
crossover between these two regions is abrupt and occurs at
qd�O�1�. This is not the case for the double-layer system;
indeed, one decay rate is essentially constant over the entire
range of wave numbers shown in Fig. 6, with its q-dependent
regime not appearing until higher wave numbers �results not
shown�.

In principle, all four decay rates shown in Fig. 6 contrib-
ute to the height-height correlation functions at both the up-
per and buried interfaces. As in the single-layer case, though,
the amplitudes corresponding to each decay rate are impor-
tant in determining which rates can be observed experimen-
tally in these correlation functions. Figures 6�B� and 6�D�
show the amplitudes for each decay rate at the buried and
upper interfaces, respectively. The decay rates shown in Figs.
6�A� and 6�C� are plotted using the same line style �dotted,
dash-dotted, black, and gray �green�� as their corresponding
amplitude at the buried and upper interfaces, respectively. In

FIG. 6. �Color online� Dimensionless decay rates 
1d�̃± /�1 ��A�, �C�� and amplitudes �1A /d2 at the buried �B� and upper �D� interfaces,
as a function of qd for a double-layer system with a buried Maxwell PBrS layer and an upper Newtonian PS layer in the absence of slip,
using the parameter values given in Table I. ��A�, �C�� The rates shown in these two figures are identical, except that the line styles in �A�
correspond to those in �B�, while the line styles in �C� correspond to those in �D�. The dashed lines indicate the approximate window of
decay rates that can be measured in the experiments, 10−3 s−1��̃�10 s−1. ��B�, �D�� The amplitudes in these figures are indicated by dotted,
dash-dotted, black, and gray �green online� lines, in order of increasing amplitude.
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these two figures we represent the experimentally accessible
range of time scales by the region between the two dashed
lines. From examining Figs. 6�B� and 6�D� it is clear that the
ratios of the various amplitudes vary by many orders of mag-
nitude over the experimentally accessible wave number
range. Also, the dominant amplitude at both interfaces is
always q dependent, as was seen in the single-layer case.

We consider first the dynamics of buried interface shown
in Figs. 6�A� and 6�B�. If we focus on the wave number
regime accessible in the experiments of �23�, 0.8�qd�2,
we see that the slow, q-dependent rate, which has the largest
amplitude at the buried interface, is too slow to be detected
experimentally. The other decay rates all have amplitudes of
approximately the same magnitude in this region. Thus, it
appears that the buried layer dynamics should, in fact, be
best described by a height autocorrelation function having
multiple exponential decays. The data of �23�, however, were
consistent with single-exponential decays at this interface.
This could be due to the fact that decay rates do not differ
substantially in this region �see the dotted, dash-dotted, and
solid curves in Fig. 6�A��, thus rendering it difficult to ob-
serve the multiexponential decay profiles. We do predict,
however, that the q-independent decay rate should be observ-
able at the buried layer, in agreement with the experimental
data.

We now turn to the dynamics of the free surface shown in
Figs. 6�C� and 6�D�. We see that for wave numbers qd
�0.7, it should be possible to observe a double-exponential
decay, since the amplitudes of the dominant, q-dependent
decay rate �gray �green� line� and subdominant
q-independent rate �black line� are approximately equal, as
shown in Fig. 6�D�. Furthermore, we can see from Fig. 6�C�
that the q-independent rate is slower than the q-dependent
rate in the experimental range of wave numbers, 0.8�qd
�2. The experiments do indeed observe a double-
exponential decay with a faster q-dependent rate and a
slower q-independent rate; however, the amplitude of the
q-independent decay is larger than that of the q-dependent
decay in the experiments, whereas the opposite is true for our
theoretical predictions.

We suspect that pursuing more detailed numerical fits of
the theory to the current experiments is unproductive due
primarily to the inadequacies of the Maxwell model. In par-
ticular, a more realistic description of the stress relaxation in
the PBrS layer will allow for a spectrum of relaxation times,
leading to a band of decay rates at a given wave number. As
is clear from Figs. 6�C� and 6�D�, the amplitudes of the de-
cay rates are highly nonlinear and thus are sensitive to the
details of the viscoelastic model used for the fluid. As the
theory currently stands, it appears to be fortuitous that one
may observe the double-exponential decay at the free sur-
face, since the amplitude ratio between the two dominant
modes �black and gray �green� lines� in this figure has an
extremely narrow maximum at qd�0.7. We expect, how-
ever, that a broadening of the relaxation time spectrum in the
material will increase the width of this maximum in Fig.
6�D�, making observation of the multiple-exponential decay
in the data much more plausible. It is important to note that
the use of a more realistic viscoelastic model for the buried
fluid should not affect the existence of the q-independent

decay rates themselves. Indeed, the scaling arguments given
in Sec. II show that the presence of the q-independent decay
rate is a robust feature of the elastic response of the fluid.
Thus, a more realistic model for the buried fluid should be
able to account for the discrepancies between our theory and
the experimental results of �23�.

Finally, we note that when the upper fluid is a Maxwell
fluid and the lower fluid is a Newtonian fluid, an additional
decay rate appears, in agreement with the arguments given in
Appendix C �data not shown�. Although four of the rates
behave in a manner similar to that of the four decay rates for
a buried Maxwell fluid—with each rate displaying one re-
gion of q-independent behavior and another region of
q-dependent, Newtonian-like behavior—the fifth rate is es-
sentially constant over the wave numbers of interest. Further-
more, we find that at certain wave numbers the amplitude of
one of the q-independent decay rates can actually be as large
as the largest q-dependent amplitudes in the height-height
correlation functions, at both the buried and upper interfaces.
Thus, our analysis suggests that detecting the q-independent
rates may be even easier when the upper fluid is viscoelastic.
It is important to repeat, however, that we do not suspect that
it is a viscoelastic response of the upper PS layer that is
leading to the q-independent decay rates seen in the experi-
ments, since the purely viscous model fits the single-layer PS
data well �22�.

V. CONCLUSION

In this article we have examined in detail the overdamped
dynamics of purely viscous and viscoelastic supported films,
taking the effects of both liquid/substrate and liquid/liquid
slip into account. These calculations show that a simple ap-
proach to understanding the appearance of wave-number-
independent decay rates in the height autocorrelation func-
tion S�q , t� in both single- and double-layer films is found by
allowing for a viscoelastic response of the material. Simple
scaling arguments show that a viscoelastic material will ex-
hibit such dynamics over some finite range of wave numbers.
The more detailed continuum mechanics calculations based
on the Maxwell fluid model presented above show that this
wave-number-independent scaling regime is experimentally
accessible, at least for a viscoelastic material with the appro-
priate values of the plateau modulus E and the stress relax-
ation time �.

More generally, the appearance of a q-independent relax-
ation rate in S�q , t� appears to be a signal of a viscoelastic
response of the supported polymer film on the time scales
probed by the measurement. The observed decay time is
strongly controlled by the longest stress relaxation time in
the material and thus may serve as an important measure of
the rheological properties of such thin supported films. In the
numerical results that we presented our choice of the stress
relaxation time � is constrained by the value of the
q-independent decay time measured in the experiments,
which is of the order of 100 s. In order to fit the data, we had
to take � to be of this same order, which is almost two orders
of magnitude longer than might be expected for PS at the
reported molecular weight �28�. We suggest that the discrep-
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ancy may be attributed to two factors. First, the bromination
of the PS changes the microscopic dynamics of the polymer.
Second, the narrow thickness of the PBrS layer �the layer is
about three radii of gyration of the chain in � conditions�
adds further constraints to the chain dynamics, leading to a
longer stress relaxation time.

Given a determination of �, we found that our choice of
the plateau modulus was not as precisely constrained by the
data. If we choose E� /
1�1, the value of the q-independent
decay time is decreased below �. Since the value of � needed
to fit the data is already anomalously large, we wish to
choose the smallest possible value of � : this restricts us to
the region E� /
1�1. As long as we choose a value of E
within this region, though, the value of the q-independent
decay rate is unaffected by it. Rather, the principal effect of
varying the plateau modulus is to shift the various amplitude
ratios of the multiple decay rates, in particular the wave
numbers at which these ratios approach unity.

This points out two more general results. The first is that
the appearance of multiple decay rates in the height autocor-
relation function S�q , t� for a single-layer system is a generic
feature of our viscoelastic model. In a two-layer system,
even purely viscous fluids admit a double-exponential decay.
If either of the layers is viscoelastic, then this double decay
becomes a more complicated multiple decay as discussed
above. Based on these calculations we suspect that the ob-
servation of multiple-exponential decays of S�q , t� in a
single-layer system may be taken as evidence of the vis-
coelasticity of the supported film. Second, our calculations
show that observable multiple-exponential decays depend on
amplitude ratios that are in turn controlled by the plateau
modulus of the material. These ratios can vary by many or-
ders of magnitude with the plateau modulus and wave num-
ber. The observation of multiple-exponential decays requires
the ratio of the two largest amplitudes to be near unity; from
our calculations based on the Maxwell model, such occur-
rences occupy a small part of the phase space spanned by
wave number and plateau modulus. While we expect that a
broader spectrum of stress relaxation times in the material
will enlarge the region of phase space over which these
multiple-exponential decays can be seen, such decays may
not be a generically observable feature of viscoelastic sup-
ported films. When such multiple-exponential decays are ob-
served, however, they should provide a sensitive window
onto the plateau modulus of the material and thus measure
the entanglement length in the layer.

Finally, we point out that these calculations do not in gen-
eral exclude other potential mechanisms as the underlying
cause of the dynamics as observed by XPCS. They do show,
however, that these data are not consistent with the dynamics
of two immiscible Newtonian fluids with either stick or slip
boundary conditions at their boundaries. Moreover, one can
show that postulating more complex surface energy
functionals—including, for example, an interfacial bending
modulus—will only lead to relaxation rates of S�q , t� that are
even more strongly dependent on the wave number, which
would be inconsistent with the data. Therefore, such consid-
erations can also be excluded. It appears that the most simple
way to account for the data is to postulate a viscoelastic
response of the supported film with a stress relaxation time

on the order of the observed decay rate of the height auto-
correlation function.

A more detailed analysis of the interfacial dynamics of
complex fluids via XPCS holds the promise of probing mo-
lecular motion in confined geometries that may be inter-
preted with the aid of the continuum modeling presented in
this article. If our calculations are to serve in this manner,
however, they must first be tested further by experiment on
rheologically well-characterized materials of thickness large
enough to discount the effects of molecular confinement.
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APPENDIX A: SOLUTION OF THE TIME-DEPENDENT
STOKES EQUATION

For a low-Reynolds-number fluid whose velocity and
pressure are of the form of Eq. �7�, the time-dependent
Stokes equation is given by

i��v�q,z,��eiqx = − 
����2�v�q,z,��eiqx� + ��P�q,z,��eiqx� ,

�A1�

where � is the fluid density and 
��� is the frequency-
dependent fluid viscosity. We also assume that the fluid is
incompressible,

� · v�x,t� = 0 ⇒ vx�q,z,�� =
i

q
vz��q,z,�� , �A2�

where the prime indicates a derivative with respect to the z
coordinate. Using the identity �� ����x ,z , t��=0 �for any
scalar function ��, we can take the curl of Eq. �A1� to elimi-
nate the pressure,

i���y�q,z,�� + 
�����z
2 − q2��y�q,z,�� = 0, �A3�

where ��x ,z , t����v�x ,z , t�=�y�x ,z , t�ŷ is the fluid vor-
ticity,

�y�q,z,�� =
i

q
vz��q,z,�� − iqvz�q,z,�� . �A4�

The solution to Eq. �A3� can be written as

�y�q,z,�� = 2iqC1 cosh�kz� + 2iqC2 sinh�kz� , �A5�

where C1 and C2 are constants of integration and k
��q2− i��


��� . The z component of the velocity obeys the dif-

ferential equation �A4�, which has the solution

vz�q,z,�� = C3 cosh�qz� + C4 sinh�qz�

+ 

0

�

dz�G�z − z���y�q,z�,�� , �A6�

where the first two terms are the homogeneous solution to
Eq. �A4� and G�z� is the Green’s function for the operator
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i��z
2−q2� /q, G�z�=−i sinh�qz���z�, ��z� being the Heaviside

step function. Then the velocity is given by

vz�q,z,�� = 2C1�q
2 cosh�kz� + 2C2�q

2 sinh�kz�

+ �C3 − 2C1�q
2�cosh�qz�

+ �C4 − 2C2�kq�sinh�qz� , �A7�

where Cj��Cj / �k2−q2� for j=1,2.
The pressure can be obtained from the x component of

Eq. �A1�,

P�q,z,�� =

���

q2 �vz��q,z,�� − k2vz��q,z,��� . �A8�

Note that the z component of Eq. �A1� is automatically sat-
isfied by this pressure and the velocity field given by Eq.
�A7�.

For overdamped fluids, where the inertial term in the
time-dependent Stokes equation—that is, the left-hand side
of Eq. �A1�—is negligible, we can set �=0, which causes
k→q. In this case, the velocity, Eq. �A7�, is given by

vz�q,z,�� = C3 cosh�qz� + �C4 − C2�sinh�qz� + C1qz sinh�qz�

+ C2qz cosh�qz� . �A9�

APPENDIX B: THE FLUCTUATION-DISSIPATION
THEOREM

The fluctuation-dissipation theorem relates correlations
between the orthogonal dynamical variables describing some
system at equilibrium to the response of these variables to
external forces. For the single-fluid-layer system we consider
in this paper, there is only one dynamical variable, the height
of the fluid, h�x , t�. For the double-layer system, there are
two orthogonal dynamical variables, the normal-mode ampli-
tudes h��x , t�, where �=±. In both cases, the response func-
tion can be obtained from the normal-stress boundary condi-
tion�s� at the fluid interface�s�, which in the normal-mode
basis can be written in the form

h��q,��
���q,��

= f��q,�� . �B1�

The fluctuation-dissipation theorem relates the response
function ���q ,�� to the height-height correlation function

S��q,t� �
�2��3

kBTL2 �h��q,t��h�
*�q,t + t��	

= 

−�

� d�

2�i�
e−i�t����q,�� − ��

*�− q,��� , �B2�

where L2��d2x and the asterisk indicates complex conjuga-
tion.

The integral in Eq. �B2� can be evaluated by contour in-
tegration using a semicircular, negatively oriented contour C
whose arc lies in the negative imaginary half-plane and
whose diameter is the real axis. We can see from Eq. �B1�
that the frequencies for which ��

−1�q ,��=0 are precisely the

normal-mode frequencies �n �i.e., the frequencies that satisfy
the normal-stress boundary conditions, Eq. �B1�, for f�=0�.
Because the system is overdamped, these frequencies lie on
the negative imaginary axis, within the contour C; therefore,
each normal-mode frequency contributes a nonzero residue
to the contour integral. Furthermore, it can be shown that, for
all systems we consider in this paper, ��

*�−q ,��=���q ,−��.
This implies that the second term in Eq. �B2� has no poles
inside the contour; nor does it contribute to the residues at
the poles �n. Assuming the poles at each �n are simple poles
�which can be shown to be true in all cases�, Eq. �B2� be-
comes

S��q,t� = − �
�n

lim
�→�n

�� − �n�
���q,��

�
e−i�t� . �B3�

APPENDIX C: NUMBER OF NORMAL-MODE DECAY
RATES

The number of decay modes in a dynamical system is
simply related to the number of independent degrees of free-
dom in that system �29�. It is therefore somewhat counterin-
tuitive to observe two decay rates for capillary waves on a
single supported viscoelastic layer and either four or five
decay rates in the double-layer system. It is perhaps most
surprising to find the number of decay rates to change upon
inverting the order of the layering of the two materials. In
this appendix we explain this result in a simple way by con-
sidering the equations of motion in the time domain rather
than in the frequency domain, as we have done throughout
the rest of this article.

Let us first consider the single-layer case. Here and
throughout this appendix we suppress any wave number q
dependence for clarity. From the boundary condition, Eq.
�10�, we see that vz�z ,���−i�h���. Using the boundary
conditions, Eqs. �8�–�11�, we write the velocity in the form

vz�z,�� = − i�h�����z� . �C1�

Taken in combination with the stress boundary condition, Eq.
�13��, we find

�q2h��� = − i�
���h���f�0� , �C2�

where f�z��3���z�−���z� /q2.
For a Newtonian fluid, 
���=
. Converting Eq. �C2�

back to the time domain we recover a first-order differential
equation for the decay of the surface height field:

�q2h�t� = 
f�0�ḣ�t� . �C3�

Thus, we expect only one decay rate at a given wave number
for capillary waves on a single supported Newtonian fluid.

For the single supported Maxwell fluid the situation is
more complicated. Now the viscosity is a complex
frequency-dependent function, which is given by Eq. �23�.
As a result, conversion of Eq. �C2� into the time domain
yields an integro-differential equation
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�q2

f�0�
h�t� = 
0ḣ�t� −

E0

�



−�

t

dt�h�t��e−�t−t��/�. �C4�

The time evolution of the surface height now depends on the
entire deformation history of the surface convoluted with an
exponential memory kernel. The simple form of the memory
kernel is an artifact of the simplicity of the Maxwell fluid,
but the general structure of this equation of motion holds for
any more complex model of viscoelasticity.

Taking a time derivative of Eq. �C4� we may write a
single, second-order differential equation for the amplitude
of the height field at wave vector q:

�q2

f�0�
��ḣ�t� + h�t�� = 
0��ḧ�t� + ḣ�t�� − E0h�t� . �C5�

From this second-order differential equation, which has two
independent exponentially decaying solutions, we know to
expect a double-exponential decay for capillary waves on the
supported Maxwell fluid.

We now consider the case of two fluid layers. As in the
single-layer case we can use the boundary conditions, Eqs.
�31�–�36�, to write the fluid velocities in the form

vk,z�z,�� = − i��h1����k1�z� + h2����k2�z�� , �C6�

with k=1,2 indexing the fluid layers. There remain three
more boundary conditions. One enforces tangential stress
continuity at the fluid/fluid interface; the other two set the
difference in the normal stresses at both the fluid/fluid inter-
face and the free surface in terms of their respective surface
tensions. These conditions may be written as, respectively,


1��� �
k=1,2

g1k�0�hk��� = 
2��� �
k=1,2

g2k�0�hk��� �C7�

and

�1q2h1��� = �
j,k=1,2

�− 1� ji�hk���
 j���f jk�d2� , �C8�

�2q2h2��� = �
k=1,2

i�
2���f2k�0�hk��� , �C9�

where f jk�z�=3� jk� �z�−� jk��z� /q2 and gjk�z�=q2� jk�z�+� jk� �z�.
In a manner analogous to the one used above with the single-
layer problem, we can rewrite Eqs. �C7�–�C9� in the time
domain. Note that the presence of the i� factor in Eqs. �C8�
and �C9� implies a time derivative.

When both fluids are Newtonian, Eq. �C7� involves no
time derivatives, whereas both Eqs. �C8� and �C9� are first-
order differential equations. Having a system of two first-
order differential equations, we expect two normal-mode de-
cay rates for a double layer of two immiscible Newtonian
fluids.

If either the upper or buried fluid is a Maxwell fluid, then
it clear from the arguments given in the single-layer case that
Eq. �C7� becomes a first-order differential equation in the
time domain, whereas Eq. �C8� becomes a second-order or-
dinary differential equation. Equation �C9�, on the other
hand, depends only on the viscosity of the upper fluid, 
2, so
it becomes a second-order differential equation only when
the upper fluid is a Maxwell fluid; otherwise, it is a first-
order differential equation. Therefore, if the upper layer is a
Newtonian fluid, we have a set of two first-order differential
equations and one second-order differential equation; we ex-
pect there to be four decay rates in this case. If the upper
fluid is a Maxwell fluid and the lower one is Newtonian,
however, we now have a dynamical system described by one
first-order differential equation and two second-order ones.
In this case there will be five decay rates.
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